Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 50]
Имеется множество C, состоящее из n элементов. Сколькими способами можно выбрать в C два подмножества A и B так, чтобы
а) множества A и B не пересекались;
б) множество A содержалось бы в множестве B?
|
|
Сложность: 3- Классы: 7,8,9
|
На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Антон, Артем и Вера решили вместе 100 задач по математике. Каждый из них решил
60 задач. Назовем задачу трудной, если ее решил только один человек, и легкой,
если ее решили все трое. Насколько отличается количество трудных задач
от количества легких?
|
|
Сложность: 3+ Классы: 7,8,9
|
В коридоре длиной 100 метров постелено 20 ковровых дорожек общей длины
1000 метров. Каково может быть наибольшее число незастеленных кусков (ширина
дорожки равна ширине коридора)?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 50]