ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 507]      



Задача 34900

Темы:   [ Шестиугольники ]
[ Многоугольники (неравенства) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 8,9

Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2?
Прислать комментарий     Решение


Задача 35569

Темы:   [ Шестиугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 9,10

Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны.
Прислать комментарий     Решение


Задача 53563

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3
Классы: 8,9

Найдите сумму внешних углов выпуклого n-угольника, взятых по одному при каждой вершине.

Прислать комментарий     Решение

Задача 53564

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

Докажите, что у выпуклого многоугольника может быть не более трёх острых углов.

Прислать комментарий     Решение

Задача 55579

Темы:   [ Правильные многоугольники ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

Докажите, что для любого натурального n существует выпуклый многоугольник, имеющий ровно n осей симметрии.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .