ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какую минимальную сумму цифр может иметь натуральное число, делящееся на 99?

   Решение

Задачи

Страница: << 205 206 207 208 209 210 211 >> [Всего задач: 2440]      



Задача 35790

Темы:   [ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 11 ]
Сложность: 3
Классы: 8,9

Какую минимальную сумму цифр может иметь натуральное число, делящееся на 99?

Прислать комментарий     Решение

Задача 54646

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ НОД и НОК. Взаимная простота ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

Дан угол, равный 19°. Разделите его на 19 равных частей с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 57066

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 9

Число сторон многоугольника A1...An нечётно. Докажите, что:
  а) если этот многоугольник вписанный и все его углы равны, то он правильный;
  б) если этот многоугольник описанный и все его стороны равны, то он правильный.

Прислать комментарий     Решение

Задача 60276

Темы:   [ Периодичность и непериодичность ]
[ Деление с остатком ]
Сложность: 3
Классы: 9,10

Пусть  a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T   an+T = an  (n ≥ 0).  Докажите, что
  а) среди всех периодов этой последовательности существует период наименьшей длины t;
  б) T делится на t.

Прислать комментарий     Решение

Задача 60307

Темы:   [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Страница: << 205 206 207 208 209 210 211 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .