ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли четырехугольная пирамида, у которой две противоположные боковые грани перпендикулярны основанию?

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 12601]      



Задача 35647

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 2+
Классы: 9,10

В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).
Прислать комментарий     Решение


Задача 35682

Тема:   [ Стереометрия (прочее) ]
Сложность: 2+
Классы: 6,7,8,9

Есть три кирпича и линейка. Как измерить без вычислений диагональ кирпича?
Прислать комментарий     Решение


Задача 35717

Тема:   [ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Из произвольной точки круглого бильярдного стола пущен шар. Докажите, что внутри стола найдётся такая окружность, что траектория шара её ни разу не пересечёт.
Прислать комментарий     Решение


Задача 35798

Темы:   [ Стереометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 10,11

Существует ли четырехугольная пирамида, у которой две противоположные боковые грани перпендикулярны основанию?
Прислать комментарий     Решение


Задача 52619

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 8,9

Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?

Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .