ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три равных круга радиуса R касаются друг друга внешним образом. Найдите стороны и углы треугольника, вершинами которого служат точки касания.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 329]      



Задача 56672

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности касаются в точке A. К ним проведена общая (внешняя) касательная, касающаяся окружностей в точках C и B. Докажите, что  $ \angle$CAB = 90o.
Прислать комментарий     Решение


Задача 56673

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.
Прислать комментарий     Решение


Задача 77971

Темы:   [ Касающиеся окружности ]
[ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 9

Три окружности попарно касаются друг друга. Через три точки касания проводим окружность. Доказать, что эта окружность перпендикулярна к каждой из трёх исходных. (Углом между двумя окружностями в точке их пересечения называется угол, образованный их касательными в этой точке.)
Прислать комментарий     Решение


Задача 56655

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 7,8,9

Две окружности радиусов R и r касаются внешним образом (т. е. ни одна из них не лежит внутри другой). Найдите длину общей касательной к этим окружностям.
Прислать комментарий     Решение


Задача 52590

Темы:   [ Касающиеся окружности ]
[ Средняя линия треугольника ]
Сложность: 3-
Классы: 8,9

Три равных круга радиуса R касаются друг друга внешним образом. Найдите стороны и углы треугольника, вершинами которого служат точки касания.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .