ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$. ![]() ![]() В равнобедренную трапецию с основаниями a и b вписана окружность. Найдите диагональ трапеции.
![]() ![]() |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 293]
В равнобедренную трапецию вписана окружность. Расстояние от центра окружности до точки пересечения диагоналей трапеции относится к радиусу, как
В равнобедренную трапецию с основаниями a и b вписана окружность. Найдите диагональ трапеции.
Около окружности описана равнобедренная трапеция ABCD. Боковые стороны AB и CD касаются окружности в точках M и N, K – середина AD.
Около окружности радиуса 1 описана равнобедренная трапеция, площадь которой равна 5.
Около окружности радиуса R описана трапеция. Хорда, соединяющая точки касания окружности с боковыми сторонами трапеции, равна a. Хорда параллельна основанию трапеции. Найдите площадь трапеции.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 293] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |