ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.

Вниз   Решение


Автор: Бахарев Ф.

Окружность с центром I , вписанная в грань ABC треугольной пирамиды SABC , касается отрезков AB , BC , CA в точках D , E , F соответственно. На отрезках SA , SB , SC отмечены соответственно точки A' , B' , C' так, что AA'=AD , BB'=BE , CC'=CF ; S' – точка на описанной сфере пирамиды, диаметрально противоположная точке S . Известно, что SI является высотой пирамиды. Докажите, что точка S' равноудалена от точек A' , B' , C' .

ВверхВниз   Решение


Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

ВверхВниз   Решение


Диагонали вписанного четырёхугольника взаимно перпендикулярны. Докажите, что расстояние от точки пересечения диагоналей до центра описанной окружности равно расстоянию между серединами диагоналей.

ВверхВниз   Решение


Высоты тетраэдра пересекаются в одной точке.
Докажите, что эта точка, основание одной из высот и три точки, делящие другие высоты в отношении   2 : 1,  считая от вершин, лежат на одной сфере.

ВверхВниз   Решение


Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)?

ВверхВниз   Решение


Трапеция KLMN с основаниями LM и KN вписана в окружность, центр которой лежит на основании KN. Диагональ LN трапеции равна 4, а угол MNK равен 60o. Найдите основание LM трапеции.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 499]      



Задача 79624

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3
Классы: 10,11

Найдите углы выпуклого четырёхугольника ABCD, в котором $ \angle$BAC = 30o, $ \angle$ACD = 40o, $ \angle$ADB = 50o, $ \angle$CBD = 60o и $ \angle$ABC + $ \angle$ADC = 180o.
Прислать комментарий     Решение


Задача 107676

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9,10

Треугольник ABC вписан в окружность. Точка D — середина дуги AC, точки K и L выбраны на сторонах AB и CB соответственно так, что KL параллельна AC. Пусть K' и L' — точки пересечения прямых DK и DL соответственно с окружностью. Докажите, что вокруг четырехугольника KLL'K' можно описать окружность.
Прислать комментарий     Решение


Задача 111709

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Биссектрисы двух углов вписанного четырёхугольника параллельны.
Докажите, что сумма квадратов двух сторон четырёхугольника равна сумме квадратов двух других сторон.

Прислать комментарий     Решение

Задача 116345

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9,10

Две окружности проходят через вершину угла и точку его биссектрисы. Докажите, что отрезки, высекаемые ими на сторонах угла, равны.

Прислать комментарий     Решение

Задача 53722

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Диагонали вписанного четырёхугольника взаимно перпендикулярны. Докажите, что расстояние от точки пересечения диагоналей до центра описанной окружности равно расстоянию между серединами диагоналей.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .