ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что CB = BE. ![]() |
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 492]
В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что CB = BE.
Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки.
Прямая, проходящая через центры двух окружностей называется их линией центров.
В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC.
Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 492] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |