ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В разложении (x + y)n по формуле бинома Ньютона второй член оказался равен 240, третий – 720, а четвёртый – 1080. Найдите x, y и n. РешениеДва угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника. Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что QM ⊥ AC и PM ⊥ AB. Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что BH = CX.
Медиана AM треугольника ABC перпендикулярна его биссектрисе BK. Найдите AB, если BC = 12.
Прямая, проведённая через вершину A треугольника ABC
перпендикулярно его медиане BD, делит эту медиану пополам.
Два угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника.
В треугольнике ABC биссектриса, проведённая из вершины A, высота, проведённая из вершины B, и серединный перпендикуляр к стороне AB пересекаются в одной точке. Найдите угол при вершине A.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|