ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Внутри окружности радиуса n расположено 4n отрезков длиной 1. Докажите, что можно провести прямую, параллельную или перпендикулярную данной прямой l и пересекающую по крайней мере два данных отрезка.

Вниз   Решение


Из вершин выпуклого четырехугольника опущены перпендикуляры на диагонали. Докажите, что четырехугольник, образованный основаниями перпендикуляров, подобен исходному четырехугольнику.

ВверхВниз   Решение


Докажите, что середины двух противоположных сторон любого четырёхугольника и середины его диагоналей являются вершинами параллелограмма.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 330]      



Задача 53505

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Докажите, что середины двух противоположных сторон любого четырёхугольника и середины его диагоналей являются вершинами параллелограмма.

Прислать комментарий     Решение


Задача 53530

Темы:   [ Средняя линия треугольника ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены медиана BM и высота AH. Известно, что  BM = AH.  Найдите угол MBC.

Прислать комментарий     Решение

Задача 53635

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Из вершины A треугольника ABC опущены перпендикуляры AM и AP на биссектрисы внешних углов B и C.
Докажите, что отрезок PM равен половине периметра треугольника ABC.

Прислать комментарий     Решение

Задача 53713

Темы:   [ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Треугольник ABC вписан в окружность с центром O. Точки D и E диаметрально противоположны вершинам A и B соответственно. Хорда DF параллельна стороне BC. Прямая EF пересекает сторону AC в точке G, а сторону BC – в точке H. Докажите, что  OG || BC  и  EG = GH = GC.

Прислать комментарий     Решение

Задача 53771

Темы:   [ Средняя линия треугольника ]
[ Теоремы Чевы и Менелая ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

На медиане AA1 треугольника ABC взята точка M, причём  AM : MA1 = 1 : 3.  В каком отношении прямая BM делит сторону AC?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .