ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты соответственно точки E и F так, что вписанная в тетраэдр сфера делит отрезок EF , на три части, длины которых относятся как 3:5:4, считая от точки E . Найдите длину отрезка EF . ![]() ![]() Каждая из двух равных пересекающихся хорд окружности делится точкой пересечения на два отрезка. Докажите, что отрезки первой хорды соответственно равны отрезкам второй.
![]() ![]() |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 236]
Окружность проходит через вершины A и C треугольника ABC,
пересекает сторону AB в точке D и сторону BC в точке E. Найдите
угол CDB, если AD = 5,
AC = 2
Четырёхугольник ABCD вписан в окружность. Продолжение стороны
AB за точку B пересекается с продолжением стороны DC за точку
C в точке E. Найдите угол BAD, если AB = 2,
BD = 2
Каждая из двух равных пересекающихся хорд окружности делится точкой пересечения на два отрезка. Докажите, что отрезки первой хорды соответственно равны отрезкам второй.
На отрезке AC взята точка B. На AB и AC как на диаметрах построены окружности. К отрезку AC в точке B проведён перпендикуляр BD до пересечения с большей окружностью в точке D. Из точки C проведена касательная CK к меньшей окружности. Докажите, что CD = CK.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 236] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |