ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сторонах AB, BC и AC треугольника ABC взяты точки соответственно C1, A1 и B1. Известно, что отрезки AA1, BB1 и CC1 пересекаются в точке M. Докажите, что сумма MA1 + MB1 + MC1 не превосходит наибольшей стороны треугольника ABC.
![]() |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 226]
На сторонах AB, BC и AC треугольника ABC взяты точки соответственно C1, A1 и B1. Известно, что отрезки AA1, BB1 и CC1 пересекаются в точке M. Докажите, что сумма MA1 + MB1 + MC1 не превосходит наибольшей стороны треугольника ABC.
Известно, что четыре синих треугольника на рисунке 1 равновелики. а) Докажите что три красных четырёхугольника на этом рисунке также равновелики. б) Найдите площадь одного четырёхугольника, если площадь одного синего треугольника равна 1.
Треугольники ABC и A1B1C1 имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник A2B2C2, равный треугольнику A1B1C1 и такой, что прямые AA2, BB2 и CC2 будут параллельны?
Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 226] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |