ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В окружность с центром O вписана трапеция ABCD, в которой AB || DC, AB = 5, DC = 1, угол ABC равен 60o. Точка K лежит на отрезке AB, причём AK = 2. Прямая CK пересекает окружность в точке F, отличной от C. Найдите площадь треугольника OFC. Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 523]
В прямоугольном треугольнике ABC угол C — прямой, а угол A равен 30o. Высота CC1, опущенная из вершины прямого угла на гипотенузу AB, равна 5. Из точки C1 проведены биссектрисы углов CC1A и CC1B, пересекающие стороны AC и BC в точках B1 и A1 соответственно. Найдите длину отрезка A1B1. Укажите её приближенное значение в виде десятичной дроби с точностью до 0,01.
В окружность с центром O вписана трапеция ABCD, в которой AD || BC, AD = 7, BC = 3, угол BCD равен 120o. Хорда BM окружности пересекает отрезок AD в точке N, причём ND = 2. Найдите площадь треугольника BOM.
В окружность с центром O вписана трапеция ABCD, в которой AB || DC, AB = 5, DC = 1, угол ABC равен 60o. Точка K лежит на отрезке AB, причём AK = 2. Прямая CK пересекает окружность в точке F, отличной от C. Найдите площадь треугольника OFC.
Радиус окружности, описанной около остроугольного треугольника ABC, равен 1. Известно, что на этой окружности лежит центр другой окружности, проходящей через вершины A, C и точку пересечения высот треугольника ABC. Найдите AC.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 523] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|