ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны четыре окружности, каждая из которых касается внешним образом двух из трёх остальных. Докажите, что через точки касания можно провести окружность.

   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 329]      



Задача 54067

Темы:   [ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

Хорда AB видна из центра круга радиуса R под углом, равным 120o . Найдите радиусы наибольших окружностей, вписанных в сегменты, на которые хорда AB разбивает данный круг.
Прислать комментарий     Решение


Задача 54613

Темы:   [ Построения ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся двух данных окружностей, причём одной из них — в данной точке.

Прислать комментарий     Решение


Задача 55469

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

Радиусы окружностей S1 и S2, касающихся в точке A, равны R и r (R > r). Найдите длину касательной, проведённой к окружности S2 из точки B, лежащей на окружности S1, если известно, что AB = a. (Разберите случаи внутреннего и внешнего касания).

Прислать комментарий     Решение


Задача 55470

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Даны четыре окружности, каждая из которых касается внешним образом двух из трёх остальных. Докажите, что через точки касания можно провести окружность.
Прислать комментарий     Решение


Задача 56895

Темы:   [ Окружность, вписанная в угол ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 8,9

Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус описанной окружности треугольника со сторонами     равен    где p – полупериметр треугольника ABC.

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .