ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.
![]() |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 109]
Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.
Известно, что AE и CD — биссектрисы треугольника ABC,
Докажите, что если ABCD — вписанный четырёхугольник, то сумма радиусов окружностей, вписанных в треугольники ABC и ACD равна сумме радиусов окружностей, вписанных в треугольники BCD и BDA.
Два угла треугольника равны 50o и 100o. Под каким углом видна каждая сторона треугольника из центра вписанной окружности?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 109] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |