Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 109]
В треугольнике известны углы A, B, C. Найдите углы шести треугольников, на которые данный треугольник разбивается его биссектрисами.
Высоты остроугольного треугольника ABC, проведённые из вершин A и B, пересекаются в точке H, причём ∠AHB = 120°, а биссектрисы, проведённые из вершин B и C, – в точке K, причём ∠BKC = 130°. Найдите угол ABC.
В остроугольном треугольнике ABC угол A равен 60°. Докажите,
что биссектриса одного из углов, образованных высотами, проведёнными из вершин B и C, проходит через центр описанной окружности этого треугольника.
Из точки пересечения двух биссектрис сторона треугольника видна под углом 110°. Найдите угол треугольника, противолежащий этой стороне.
Докажите, что если
a и
b – две стороны треугольника,
γ – угол
между ними и
l – биссектриса этого угла, то
l = .
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 109]