ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Поворот (прочее)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны 2n прямых, окружность и точка K внутри неё. С помощью циркуля и линейки впишите в окружность (2n + 1)-угольник, одна сторона которого проходит через точку K, а остальные стороны параллельны данным прямым. Решение |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]
Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A1B1C повернули вокруг точки A1 так, что вершина B1 перешла в точку B2 на прямой BC. При этом вершина C перешла в некоторую точку C2, также лежащую с точкой A по одну сторону от прямой BC. Докажите, что C2B2 || AC.
Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте?
б) В окружность вписаны треугольники ABC и A1B1C1, причем треугольник ABC неподвижен, а треугольник A1B1C1 вращается. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке не более чем при одном положении треугольника A1B1C1.
На плоскости даны 2n прямых, окружность и точка K внутри неё. С помощью циркуля и линейки впишите в окружность (2n + 1)-угольник, одна сторона которого проходит через точку K, а остальные стороны параллельны данным прямым.
Существует ли выпуклая фигура, не имеющая осей симметрии, но переходящая в себя при некотором повороте?
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|