ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны 2n прямых, окружность и точка K внутри неё. С помощью циркуля и линейки впишите в окружность (2n + 1)-угольник, одна сторона которого проходит через точку K, а остальные стороны параллельны данным прямым.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



Задача 54041

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Поворот (прочее) ]
Сложность: 3
Классы: 8,9

Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A1B1C повернули вокруг точки A1 так, что вершина B1 перешла в точку B2 на прямой BC. При этом вершина C перешла в некоторую точку C2, также лежащую с точкой A по одну сторону от прямой BC. Докажите, что  C2B2 || AC.

Прислать комментарий     Решение

Задача 55611

Темы:   [ Центральная симметрия (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Поворот (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте?

Прислать комментарий     Решение

Задача 57149

Темы:   [ ГМТ и вписанный угол ]
[ ГМТ - окружность или дуга окружности ]
[ Поворот (прочее) ]
Сложность: 4
Классы: 8,9

а) На окружности фиксированы точки A и B, а точки A1 и B1 движутся по той же окружности так, что величина дуги A1B1 остается постоянной; M — точка пересечения прямых AA1 и BB1. Найдите ГМТ M.
б) В окружность вписаны треугольники ABC и A1B1C1, причем треугольник ABC неподвижен, а треугольник A1B1C1 вращается. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке не более чем при одном положении треугольника A1B1C1.
Прислать комментарий     Решение


Задача 55677

Темы:   [ Симметрия помогает решить задачу ]
[ Композиции симметрий ]
[ Поворот (прочее) ]
Сложность: 5
Классы: 8,9

На плоскости даны 2n прямых, окружность и точка K внутри неё. С помощью циркуля и линейки впишите в окружность (2n + 1)-угольник, одна сторона которого проходит через точку K, а остальные стороны параллельны данным прямым.

Прислать комментарий     Решение


Задача 35127

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Свойства симметрий и осей симметрии ]
[ Поворот (прочее) ]
Сложность: 3+
Классы: 9,10

Существует ли выпуклая фигура, не имеющая осей симметрии, но переходящая в себя при некотором повороте?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .