ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.

   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1547]      



Задача 55688

Темы:   [ Перенос помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.

Прислать комментарий     Решение


Задача 55755

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

На двух сторонах AB и BC правильного 2n-угольника взято по точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.

Прислать комментарий     Решение

Задача 55782

Темы:   [ Гомотетия помогает решить задачу ]
[ Описанные четырехугольники ]
[ Общая касательная к двум окружностям ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Автор: Купцов Л.

На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём  r1 > r2  и   r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.

Прислать комментарий     Решение

Задача 56519

Тема:   [ Подобные фигуры ]
Сложность: 4
Классы: 9

Докажите, что проекции основания высоты треугольника на стороны, ее заключающие, и на две другие высоты лежат на одной прямой.
Прислать комментарий     Решение


Задача 56520

Тема:   [ Подобные фигуры ]
Сложность: 4
Классы: 9

На отрезке AC взята точка B и на отрезках AB, BC, CA построены полуокружности S1, S2, S3 по одну сторону от AC. D — такая точка на S3, что BD $ \perp$ AC. Общая касательная к S1 и S2, касается этих полуокружностей в точках F и E соответственно.
а) Докажите, что прямая EF параллельна касательной к S3, проведенной через точку D.
б) Докажите, что BFDE — прямоугольник.
Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .