ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найдите объём правильной четырёхугольной пирамиды со стороной основания a и высотой h .

Вниз   Решение


Даны непересекающиеся хорды AB и CD окружности и точка J на хорде CD. Постройте на окружности точку X так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, делящийся точкой J пополам.

ВверхВниз   Решение


В треугольнике KLM угол $ \angle$L — тупой, продолжение высот MA и LB пересекаются в точке O, $ \angle$LKM = $ \alpha$, $ \angle$KLM = $ \beta$, KL = m. Найдите расстояние от точки O до прямой KL.

ВверхВниз   Решение


Докажите, что квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними, т.е.

c2 = a2 + b2 - 2ab cos$\displaystyle \gamma$,

где a, b, c — стороны треугольника, $ \gamma$ — угол, противолежащий стороне, равной c.

ВверхВниз   Решение


Числа x, y и z удовлетворяют соотношению xy + yz + xz = 1. Докажите, что существуют числа $ \alpha$, $ \beta$, $ \gamma$ такие, что $ \alpha$ + $ \beta$ + $ \gamma$ = $ \pi$ и выполняются равенства

x = tg $\displaystyle {\dfrac{\alpha}{2}}$,y = tg $\displaystyle {\dfrac{\beta}{2}}$z = tg $\displaystyle {\dfrac{\gamma}{2}}$.


ВверхВниз   Решение


Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 56609

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Известно, что в некотором треугольнике медиана, биссектриса и высота, проведенные из вершины C, делят угол на четыре равные части. Найдите углы этого треугольника.
Прислать комментарий     Решение


Задача 56610

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Докажите, что в любом треугольнике ABC биссектриса AE лежит между медианой AM и высотой AH.
Прислать комментарий     Решение


Задача 56611

Тема:   [ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.
Прислать комментарий     Решение


Задача 116222

Темы:   [ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 9,10,11

В треугольнике ABC проведены биссектрисы BB1 и CC1. Известно, что центр описанной окружности треугольника BB1C1 лежит на прямой AC. Найдите угол C треугольника.

Прислать комментарий     Решение

Задача 52792

Темы:   [ Биссектриса делит дугу пополам ]
[ Теорема косинусов ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  BC = 4,  AB = 2 .   Известно, что центр окружности, проходящей через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .