ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 35369

Темы:   [ Свойства симметрий и осей симметрии ]
[ Инварианты ]
[ Свойства частей, полученных при разрезаниях ]
[ Многоугольники (прочее) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9,10,11

С многоугольником разрешено проделывать следующую операцию. Если многоугольник делится отрезком AB на на два многоугольника, то один из этих многоугольников можно отразить симметрично относительно серединного перпендикуляра к отрезку AB. (Операция разрешается только в том случае, когда в результате получается несамопересекающийся многоугольник.) Можно ли путем нескольких таким операций получить из квадрата правильный треугольник?
Прислать комментарий     Решение


Задача 78612

Темы:   [ Целочисленные решетки (прочее) ]
[ Объем помогает решить задачу ]
[ Свойства частей, полученных при разрезаниях ]
[ Объем круглых тел ]
[ Неравенства с объемами ]
Сложность: 6
Классы: 10,11

В бесконечно большой каравай, занимающий все пространство, в точках с целыми координатами впечены изюминки диаметра 0,1. Каравай разрезали на части несколькими плоскостями. Доказать, что найдется неразрезанная изюминка.
Прислать комментарий     Решение


Задача 56804

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Длины сторон (неравенства) ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Вписанные и описанные многоугольники ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 5
Классы: 9,10

Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .