Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 28]
|
|
Сложность: 4+ Классы: 10,11
|
Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую
полученную точку деления проведены две плоскости, параллельные соответственно
двум граням тетраэдра, не проходящим через эту точку. На сколько частей
построенные плоскости разбивают тетраэдр?
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Выпуклый многоугольник разрезан на
p треугольников так, что на их сторонах нет
вершин других треугольников. Пусть
n и
m — количества вершин этих
треугольников, лежащих на границе исходного многоугольника и внутри его.
а) Докажите, что
p =
n + 2
m - 2.
б) Докажите, что количество отрезков, являющихся сторонами полученных
треугольников, равно 2
n + 3
m - 3.
Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Поверхность кубика Рубика 3 x 3 x 3 состоит из 54 клеток. Какое наибольшее количество клеток можно отметить так, чтобы отмеченные клетки не имели общих вершин?
Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 28]