Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 78]
Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что ∠AKM = ∠CKL. Докажите, что MA = MB.
Найти углы треугольника, если известно, что все вписанные в него квадраты равны (каждый из квадратов вписан так, что две его вершины лежат на одной из сторон треугольника, а остальные вершины на двух других сторонах треугольника).
В равнобедренный треугольник вписана окружность. Точки касания делят каждую боковую сторону на отрезки длиной m и n, считая от вершины. К окружности проведены три касательные, параллельные каждой из сторон треугольника. Найдите длины отрезков касательных, заключённых между сторонами треугольника.
Диагональ AC трапеции ABCD делит её на два подобных
треугольника. Докажите, что AC² = ab, где a и b – основания трапеции.
В треугольнике ABC с прямым углом C проведены высота CD и биссектриса CF; DK и DL – биссектрисы
треугольников BDC и ADC.
Докажите, что CLFK – квадрат.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 78]