ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



Задача 55462

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Периметр треугольника ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Вписанные и описанные окружности ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что прямая делит периметр и площадь треугольника в равных отношениях тогда и только тогда, когда она проходит через центр вписанной окружности треугольника.

Прислать комментарий     Решение

Задача 76436

Темы:   [ Треугольник (построения) ]
[ Периметр треугольника ]
[ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 9

На плоскости дан угол, образованный двумя лучами a и b, и некоторая точка M.
Провести через точку M прямую c так, чтобы треугольник, образованный прямыми a, b и c, имел периметр данной величины.

Прислать комментарий     Решение

Задача 56887

Темы:   [ Вписанные и описанные окружности ]
[ Периметр треугольника ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанный угол равен половине центрального ]
[ Средняя линия треугольника ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4+
Классы: 8,9

Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 86512

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Неравенство треугольника (прочее) ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?

Прислать комментарий     Решение

Задача 53405

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Периметр треугольника ]
Сложность: 3
Классы: 8,9

Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что  AO = BO.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .