Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 43]
|
|
Сложность: 3+ Классы: 7,8,9
|
Впишите в данный полукруг правильный треугольник наибольшего периметра.
С помощью циркуля и линейки около данного треугольника опишите равносторонний треугольник с наибольшим возможным периметром.
|
|
Сложность: 4- Классы: 9,10
|
Пусть H – ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A0, C0 соответственно. Докажите, что периметр треугольника A0OC0 (O – центр описанной окружности треугольника ABC) равен AC.
|
|
Сложность: 4 Классы: 8,9,10
|
Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение.
|
|
Сложность: 5 Классы: 9,10,11
|
Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон
AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.
Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 43]