ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На дуге A1A2n + 1 описанной окружности S правильного (2n + 1)-угольника A1...A2n + 1 взята точка A. Докажите, что: а) d1 + d3 + ... + d2n + 1 = d2 + d4 + ... + d2n, где di = AAi; б) l1 + ... + l2n + 1 = l2 + ... + l2n, где li — длина касательной, проведенной из точки A к окружности радиуса r, касающейся S в точке Ai (все касания одновременно внутренние или внешние). ![]() |
Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 2247]
а) d1 + d3 + ... + d2n + 1 = d2 + d4 + ... + d2n, где di = AAi; б) l1 + ... + l2n + 1 = l2 + ... + l2n, где li — длина касательной, проведенной из точки A к окружности радиуса r, касающейся S в точке Ai (все касания одновременно внутренние или внешние).
Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.
Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |