Страница:
<< 177 178 179 180
181 182 183 >> [Всего задач: 2247]
Через каждую из точек пересечения продолжений сторон выпуклого четырехугольника
ABCD проведено по две прямые. Эти прямые делят четырехугольник на девять
четырехугольников.
а) Докажите, что если три из четырехугольников, примыкающих к вершинам
A,
B,
C,
D, описанные, то четвертый четырехугольник тоже описанный.
б) Докажите, что если
ra,
rb,
rc,
rd — радиусы окружностей,
вписанных в четырехугольники, примыкающие к вершинам
A,
B,
C,
D, то
Окружности
S1 и
S2,
S2 и
S3,
S3 и
S4,
S4 и
S1 касаются
внешним образом. Докажите, что четыре общие касательные (в точках касания
окружностей) либо пересекаются в одной точке, либо касаются одной окружности.
Докажите, что точка пересечения диагоналей описанного
четырехугольника совпадает с точкой пересечения диагоналей
четырехугольника, вершинами которого служат точки касания сторон
исходного четырехугольника с вписанной окружностью.
Продолжения сторон четырехугольника
ABCD, вписанного
в окружность с центром
O, пересекаются в точках
P и
Q, а его
диагонали пересекаются в точке
S.
а) Расстояния от точек
P,
Q и
S до точки
O равны
p,
q и
s, а
радиус описанной окружности равен
R. Найдите длины сторон
треугольника
PQS.
б) Докажите, что высоты треугольника
PQS пересекаются в точке
O.
Четыре прямые задают четыре треугольника. Докажите,
что ортоцентры этих треугольников лежат на одной прямой.
Страница:
<< 177 178 179 180
181 182 183 >> [Всего задач: 2247]