ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть S — окружность Аполлония для точек A и B, причем точка A лежит вне окружности S. Из точки A проведены касательные AP и AQ к окружности S. Докажите, что B — середина отрезка PQ.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 492]      



Задача 57142

 [Окружность Аполлония]
Темы:   [ ГМТ - окружность или дуга окружности ]
[ Метод координат на плоскости ]
Сложность: 4
Классы: 8,9

На плоскости даны две точки A и B. Найдите ГМТ M, для которых AM : BM = k (окружность Аполлония).
Прислать комментарий     Решение


Задача 57143

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

Пусть S — окружность Аполлония для точек A и B, причем точка A лежит вне окружности S. Из точки A проведены касательные AP и AQ к окружности S. Докажите, что B — середина отрезка PQ.
Прислать комментарий     Решение


Задача 57149

Темы:   [ ГМТ и вписанный угол ]
[ ГМТ - окружность или дуга окружности ]
[ Поворот (прочее) ]
Сложность: 4
Классы: 8,9

а) На окружности фиксированы точки A и B, а точки A1 и B1 движутся по той же окружности так, что величина дуги A1B1 остается постоянной; M — точка пересечения прямых AA1 и BB1. Найдите ГМТ M.
б) В окружность вписаны треугольники ABC и A1B1C1, причем треугольник ABC неподвижен, а треугольник A1B1C1 вращается. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке не более чем при одном положении треугольника A1B1C1.
Прислать комментарий     Решение


Задача 57163

Тема:   [ Метод ГМТ ]
Сложность: 4
Классы: 9

Точки A, B и C таковы, что для любой четвертой точки M либо MA $ \leq$ MB, либо MA $ \leq$ MC. Докажите, что точка A лежит на отрезке BC.
Прислать комментарий     Решение


Задача 57164

Тема:   [ Метод ГМТ ]
Сложность: 4
Классы: 9

Дан четырехугольник ABCD, причем AB < BC и AD < DC. Точка M лежит на диагонали BD. Докажите, что AM < MC.
Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .