ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны середины трех равных сторон выпуклого четырехугольника. Постройте этот четырехугольник.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 57243

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Даны середины трех равных сторон выпуклого четырехугольника. Постройте этот четырехугольник.
Прислать комментарий     Решение


Задача 57244

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Даны три вершины вписанного и описанного четырехугольника. Постройте его четвертую вершину.
Прислать комментарий     Решение


Задача 65934

Темы:   [ Четырехугольники (построения) ]
[ Вписанные и описанные окружности ]
[ Экстремальные свойства (прочее) ]
[ Движение помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Дан треугольник АВС и две прямые l1, l2. Через произвольную точку D на стороне АВ проводится прямая, параллельная l1, пересекающая АС в точке Е, и прямая, параллельная l2, пересекающая ВС в точке F. Построить точку D, для которой отрезок EF имеет наименьшую длину.

Прислать комментарий     Решение

Задача 78125

Темы:   [ Четырехугольники (построения) ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 10,11

Дан четырёхугольник ABCD. Вписать в него прямоугольник с заданными направлениями сторон.
Прислать комментарий     Решение


Задача 67223

Темы:   [ Четырехугольники (построения) ]
[ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .