ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

a, b и c - длины сторон произвольного треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.


   Решение

Задачи

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 12601]      



Задача 57306

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8

Даны n точек  A1,..., An и окружность радиуса 1. Докажите, что на окружности можно выбрать точку M так, что  MA1 + ... + MAn $ \geq$ n.
Прислать комментарий     Решение


Задача 57311

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8

При любом натуральном n из чисел an, bn и cn можно составить треугольник. Докажите, что среди чисел a, b и c есть два равных.
Прислать комментарий     Решение


Задача 57312

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что

a(b - c)2 + b(c - a)2 + c(a - b)2 + 4abc > a3 + b3 + c3.


Прислать комментарий     Решение

Задача 57313

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.


Прислать комментарий     Решение

Задача 57319

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 3
Классы: 8

Пусть ABCD — выпуклый четырехугольник, причем  AB + BD $ \leq$ AC + CD. Докажите, что AB < AC.
Прислать комментарий     Решение


Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .