Страница:
<< 1 2 [Всего задач: 10]
Внутри квадрата со стороной 100 расположена
ломаная
L, обладающая тем свойством, что любая точка
квадрата удалена от
L не больше чем на 0, 5. Докажите,
что на
L есть две точки, расстояние между которыми не
больше 1, а расстояние по
L между ними не меньше 198.
|
|
Сложность: 4- Классы: 10,11
|
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки,
лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем .
|
|
Сложность: 4 Классы: 7,8,9
|
Дан квадрат со стороной 1, внутренние стенки которого зеркальны. Из вершины квадрата был пущен луч света, который 1000 раз отразился от стенок, после чего попал в (возможно, другую) вершину квадрата. Какой минимальный путь мог при этом пройти луч света?
|
|
Сложность: 4- Классы: 8,9,10
|
В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?
|
|
Сложность: 4- Классы: 7,8,9,10
|
Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.
Страница:
<< 1 2 [Всего задач: 10]