ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Высота треугольника ABC, опущенная на сторону BC, равна h,
![]() ![]() Пусть ABCDA1B1C1D1 – единичный куб. Найдите объём общей части треугольных пирамид ACB1D1 и A1C1BD . ![]() ![]() ![]() Остроугольный треугольник ABC (AB < AC) вписан в окружность Ω. Пусть M – точка пересечения его медиан, а AH – высота. Луч MH пересекает Ω в точке A'. Докажите, что описанная окружность треугольника A'HB касается прямой AB. ![]() ![]() ![]() а) Докажите, что из медиан треугольника можно составить треугольник. б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4. ![]() ![]() |
Страница: 1 2 3 4 >> [Всего задач: 16]
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.
Страница: 1 2 3 4 >> [Всего задач: 16] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |