ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В трапеции ABCD стороны BC и AD параллельны, M — точка пересечения биссектрис углов A и B, N — точка пересечения биссектрис углов C и D. Докажите, что 2MN = | AB + CD - BC - AD|. Решение |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1026]
Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.
На двух сторонах AB и BC правильного 2n-угольника взято по точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.
а) Докажите, что KM(BC + AD)/2, причем равенство достигается, только если BC| AD. б) При фиксированных длинах сторон четырехугольника ABCD найдите максимальные значения длин отрезков KM и LN.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1026] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|