ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Даны окружности S1 и S2, пересекающиеся в точках A и B. Проведите через точку A прямую l так, чтобы отрезок этой прямой, заключенный внутри окружностей S1 и S2, имел данную длину.
б) Впишите в данный треугольник ABC треугольник, равный данному треугольнику PQR.

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1547]      



Задача 57157

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетичные окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Гомотетия (ГМТ) ]
Сложность: 4
Классы: 9,10

Две окружности пересекаются в точках A и B. Через точку A проведена секущая, вторично пересекающаяся с окружностями в точках P и Q. Какую линию описывает середина отрезка PQ, когда секущая вращается вокруг точки A?
Прислать комментарий     Решение


Задача 57813

Тема:   [ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9

Пусть K, L, M и N — середины сторон AB, BC, CD и DA выпуклого четырехугольника ABCD.
а) Докажите, что KM$ \le$(BC + AD)/2, причем равенство достигается, только если BC| AD.
б) При фиксированных длинах сторон четырехугольника ABCD найдите максимальные значения длин отрезков KM и LN.
Прислать комментарий     Решение


Задача 57815

Тема:   [ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9

В трапеции ABCD стороны BC и AD параллельны, M — точка пересечения биссектрис углов A и B, N — точка пересечения биссектрис углов C и D. Докажите, что 2MN = | AB + CD - BC - AD|.
Прислать комментарий     Решение


Задача 57821

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
[ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Даны непересекающиеся хорды AB и CD окружности. Постройте точку X окружности так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, имеющий данную длину a.
Прислать комментарий     Решение


Задача 57824

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 4
Классы: 8,9

а) Даны окружности S1 и S2, пересекающиеся в точках A и B. Проведите через точку A прямую l так, чтобы отрезок этой прямой, заключенный внутри окружностей S1 и S2, имел данную длину.
б) Впишите в данный треугольник ABC треугольник, равный данному треугольнику PQR.
Прислать комментарий     Решение


Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .