Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]
В треугольнике
ABC проведены медиана
CM и высота
CH.
Прямые, проведенные через произвольную точку
P плоскости
перпендикулярно
CA,
CM и
CB, пересекают прямую
CH
в точках
A1,
M1 и
B1. Докажите, что
A1M1 =
B1M1.
Два квадрата
BCDA и
BKMN имеют общую вершину
B.
Докажите, что медиана
BE треугольника
ABK и высота
BF
треугольника
CBN лежат на одной прямой. (Вершины
обоих квадратов перечислены по часовой стрелке.)
|
|
Сложность: 4- Классы: 9,10,11
|
Остроугольный треугольник ABC (AB < AC) вписан в окружность Ω. Пусть M – точка пересечения его медиан, а AH – высота. Луч MH пересекает Ω в точке A'. Докажите, что описанная окружность треугольника A'HB касается прямой
AB.
В остроугольном неравностороннем треугольнике через одну вершину проведена высота, через другую – медиана, через третью биссектриса.
Докажите, что если проведённые линии, пересекаясь, образуют треугольник, то он не может быть равносторонним.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]