ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB и AC треугольника ABC внешним образом построены правильные треугольники ABC' и AB'C. Точка M делит сторону BC в отношении BM : MC = 3 : 1; K и L — середины сторон AC' и B'C. Докажите, что углы треугольника KLM равны  30o, 60o и  90o.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 401]      



Задача 57936

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

На сторонах AB и BC правильного треугольника ABC взяты точки M и N так, что MN| AC, E — середина отрезка AN, D — центр треугольника BMN. Найдите величины углов треугольника CDE.
Прислать комментарий     Решение


Задача 57937

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

На сторонах треугольника ABC внешним образом построены правильные треугольники ABC1, AB1C и A1BC. Пусть P и Q — середины отрезков A1B1 и A1C1. Докажите, что треугольник APQ правильный.
Прислать комментарий     Решение


Задача 57938

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

На сторонах AB и AC треугольника ABC внешним образом построены правильные треугольники ABC' и AB'C. Точка M делит сторону BC в отношении BM : MC = 3 : 1; K и L — середины сторон AC' и B'C. Докажите, что углы треугольника KLM равны  30o, 60o и  90o.
Прислать комментарий     Решение


Задача 57939

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

Правильные треугольники ABC, CDE, EHK (вершины обходятся в направлении против часовой стрелки) расположены на плоскости так, что $ \overrightarrow{AD}$ = $ \overrightarrow{DK}$. Докажите, что треугольник BHD тоже правильный.
Прислать комментарий     Решение


Задача 57947

Тема:   [ Поворот (прочее) ]
Сложность: 4
Классы: 9

На плоскости лежат две одинаковые буквы $ \Gamma$. Концы коротких палочек этих букв обозначим A и A'. Длинные палочки разбиты на n равных частей точками A1,..., An - 1; A1',..., An - 1' (точки деления нумеруются от концов длинных палочек). Прямые AAi и A'Ai' пересекаются в точке Xi. Докажите, что точки X1,..., Xn - 1 образуют выпуклый многоугольник.
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .