ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Для данного треугольника ABC, все углы которого меньше 120o, найдите точку, сумма расстояний от которой до вершин минимальна. б) Внутри треугольника ABC, все углы которого меньше 120o, взята точка O, из которой его стороны видны под углом 120o. Докажите, что сумма расстояний от точки O до вершин равна (a2 + b2 + c2)/2 + 2S. Решение |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1026]
Докажите, что три прямые, симметричные относительно сторон треугольника прямой, проходящей через точку пересечения высот треугольника, пересекаются в одной точке.
Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что A2B2 || AB и прямые AA2, BB2 и CC2 пересекаются в одной точке.
б) Внутри треугольника ABC, все углы которого меньше 120o, взята точка O, из которой его стороны видны под углом 120o. Докажите, что сумма расстояний от точки O до вершин равна (a2 + b2 + c2)/2 + 2S.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1026] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|