ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для любого тринадцатиугольника найдется прямая, содержащая ровно одну его сторону, однако при любом n > 13 существует n-угольник, для которого это неверно.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 204]      



Задача 111338

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Равносоставленные фигуры ]
[ Площади криволинейных фигур ]
Сложность: 5
Классы: 9,10,11

Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.
Прислать комментарий     Решение


Задача 110751

Темы:   [ Выпуклые многоугольники ]
[ Выпуклый анализ и линейное программирование ]
[ Неравенства с площадями ]
[ Индукция в геометрии ]
[ Перенос помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 5+
Классы: 10,11

Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.
Прислать комментарий     Решение


Задача 57103

Тема:   [ Выпуклые многоугольники ]
Сложность: 5+
Классы: 9

Может ли выпуклый неправильный пятиугольник иметь ровно четыре стороны одинаковой длины и ровно четыре диагонали одинаковой длины?
Может ли в таком пятиугольнике пятая сторона иметь общую точку с пятой диагональю?
Прислать комментарий     Решение


Задача 57104

Тема:   [ Выпуклые многоугольники ]
Сложность: 5+
Классы: 9

Точка O, лежащая внутри выпуклого многоугольника, образует с каждыми двумя его вершинами равнобедренный треугольник. Докажите, что точка O равноудалена от вершин этого многоугольника.
Прислать комментарий     Решение


Задача 58156

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5+
Классы: 9,10

Докажите, что для любого тринадцатиугольника найдется прямая, содержащая ровно одну его сторону, однако при любом n > 13 существует n-угольник, для которого это неверно.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .