ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На окружности радиуса 1 отмечено 100 точек. ![]() ![]() Капитан нашёл Остров Сокровищ, имеющий форму круга. На его берегу растут шесть пальм. Капитан знает, что клад закопан в середине отрезка, соединяющего ортоцентры треугольников ABC и DEF, где A, B, C, D, E, F – эти шесть пальм, но он не знает, какой буквой обозначена каждая пальма. Докажите, что тем не менее он может найти клад с первой же попытки. ![]() ![]() ![]() Докажите, что для любого n существует окружность, внутри которой лежит ровно n целочисленных точек. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]
Можно ли во всех точках плоскости с целыми координатами записать натуральные числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?
Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных?
Каждый узел бесконечной сетки покрашен в один из четырёх цветов так, что вершины каждого квадрата со стороной 1 окрашены в разные цвета. Верно ли, что узлы одной из прямых сетки окрашены только в два цвета? (Сетка образована горизонтальными и вертикальными прямыми. Расстояние между соседними параллельными прямыми равно 1.)
Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |