ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 98]      



Задача 58316

Темы:   [ Классическая комбинаторика (прочее) ]
[ Комбинаторная геометрия (прочее) ]
[ Сочетания и размещения ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9

На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

Прислать комментарий     Решение

Задача 58317

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правильные многоугольники ]
Сложность: 4
Классы: 8,9

Докажите, что число неравных треугольников с вершинами в вершинах правильного n-угольника равно ближайшему к  n²/12  целому числу.

Прислать комментарий     Решение

Задача 76447

Темы:   [ Классическая комбинаторика (прочее) ]
[ Разные задачи на разрезания ]
[ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 10,11

На сколько частей могут разделить пространство n плоскостей?
(Каждые три плоскости пересекаются в одной точке, никакие четыре плоскости не имеют общей точки.)

Прислать комментарий     Решение

Задача 78237

Темы:   [ Классическая комбинаторика (прочее) ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 10,11

Улитка должна проползти вдоль линий клетчатой бумаги путь длины 2n, начав и кончив свой путь в данном узле.
Доказать, что число различных её маршрутов равно  

Прислать комментарий     Решение

Задача 78599

Темы:   [ Классическая комбинаторика (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4
Классы: 9,10,11

На клетчатой доске 11×11 отмечено 22 клетки так, что на каждой вертикали и на каждой горизонтали отмечено ровно две клетки. Два расположения отмеченных клеток эквивалентны, если, меняя любое число раз вертикали между собой и горизонтали между собой, мы из одного расположения можем получить другое. Сколько существует неэквивалентных расположений отмеченных клеток?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .