ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Индукция" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что для любого выпуклого многогранника имеет место соотношение
B - P + Г = 2,
где B — число его вершин,
P — число ребер, Г — число граней.
Решение |
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 411]
B - P + Г = 2,
где B — число его вершин,
P — число ребер, Г — число граней.
Определим последовательности чисел (xn) и
(dn) условиями x1 = 1, xn+1 = [ ], dn = x2n+1 – 2x2n–1 (n ≥ 1).
Предположим, что цепные дроби сходятся. Согласно задаче 61330, они будут сходиться к корням многочлена x² – px + q = 0. С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу 61328): xn+1 = xn – = . Докажите, что если x0 совпадает с нулевой подходящей дробью цепной дроби α или β, то числа x1, x2, ... также будут совпадать с подходящими дробями к α или β.
Существует ли такая бесконечная возрастающая последовательность a1, a2, a3, ... натуральных чисел, что сумма любых двух различных членов последовательности взаимно проста с суммой любых трёх различных членов последовательности?
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 411] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|