ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Три велосипедиста ездят в одном направлении по круглому треку длиной 300 метров. Каждый из них движется со своей постоянной скоростью, все скорости различны. Фотограф сможет сделать удачный снимок велосипедистов, если все они окажутся на каком-либо участке трека длиной d метров. При каком наименьшем d фотограф рано или поздно заведомо сможет сделать удачный снимок?

Вниз   Решение


Секретная база окружена прозрачным извилистым забором в форме невыпуклого многоугольника, снаружи – болото. Через болото проложена прямая линия электропередач из 36 столбов, часть из которых стоит снаружи базы, а часть – внутри. (Линия электропередач не проходит через вершины забора.) Шпион обходит базу снаружи вдоль забора так, что забор всё время по правую руку от него. Каждый раз, оказавшись на линии электропередач, он считает, сколько всего столбов находится по левую руку от него (он их все видит). К моменту, когда шпион обошёл весь забор, он насчитал в сумме 2015 столбов. Сколько столбов находится внутри базы?

ВверхВниз   Решение


В некоторой школе каждый школьник знаком с 32 школьницами, а каждая школьница – с 29 школьниками. Кого в школе больше: школьников или школьниц и во сколько раз?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]      



Задача 31365

Тема:   [ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7,8

Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?

Прислать комментарий     Решение


Задача 34891

Тема:   [ Подсчет двумя способами ]
Сложность: 2+

В квадрате 2000*2000 расставлены числа так, что в любом квадрате 2*2 сумма левого верхнего числа и правого нижнего числа равна сумме левого нижнего числа и правого верхнего числа. Докажите, что сумма чисел, стоящих в левом верхнем и правом нижнем углах квадрата 2000*2000, равна сумме чисел, стоящих в двух других углах.
Прислать комментарий     Решение


Задача 34901

Тема:   [ Подсчет двумя способами ]
Сложность: 2+

В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.
Прислать комментарий     Решение


Задача 35211

Тема:   [ Подсчет двумя способами ]
Сложность: 3-
Классы: 6,7,8

Обозначим через dk количество таких домов в Москве, в которых живет не меньше k жителей, и через cm - количество жителей в m-ом по величине населения доме. Докажите равенство c1+c2+c3+... = d1+d2+d3+... .
Прислать комментарий     Решение


Задача 60338

Тема:   [ Подсчет двумя способами ]
Сложность: 3-
Классы: 7,8

В некоторой школе каждый школьник знаком с 32 школьницами, а каждая школьница – с 29 школьниками. Кого в школе больше: школьников или школьниц и во сколько раз?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .