ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра?

   Решение

Задачи

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 598]      



Задача 32778

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Дано число 1·2·3·4·5·...·56·57.
  а) Какая последняя цифра этого числа?
  б) Каковы десять последних цифр этого числа?

Прислать комментарий     Решение

Задача 60342

Темы:   [ Классическая комбинаторика (прочее) ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра?

Прислать комментарий     Решение

Задача 60421

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
  а) никакая цифра не повторяется более одного раза;
  б) повторения цифр допустимы;
  в) числа должны быть нечётными и повторений цифр быть не должно?

Прислать комментарий     Решение

Задача 78290

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9,10

Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

Прислать комментарий     Решение

Задача 88126

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 6,7,8

На какую цифру оканчивается число 19891989? А на какие цифры оканчиваются числа 19891992, 19921989, 19921992?

Прислать комментарий     Решение

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .