ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Покажите, что любое натуральное число n может быть представлено в виде где x, y, z – такие целые числа, что 0 ≤ x < y < z, либо 0 = x = y < z. Решение |
Страница: << 1 2 3 4 >> [Всего задач: 20]
Предположим, что мы хотим узнать, сколько миль в 30 километрах. Для этого представляем число 30 в фибоначчиевой системе счисления:
30 = 21 + 8 + 1 = F8 + F6 + F2 = (1010001)F.
Теперь нужно
сдвинуть каждое число на одну позицию вправо, получая
F7 + F5 + F1 = 13 + 5 + 1 = 19 = (101001)F.
Поэтому предполагаемый
результат — 19 миль. (Правильный ответ — около 18.46
миль.) Аналогично делается перевод из миль в километры.
Объясните, почему работает такой алгоритм. Проверьте, что он дает округленное число миль в n километрах при всех n 100, отличающееся от правильного ответа меньше чем на 2/3 мили.
Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?
Покажите, что любое натуральное число n может быть представлено в виде где x, y, z – такие целые числа, что 0 ≤ x < y < z, либо 0 = x = y < z.
Имеются два симметричных кубика. Можно ли так написать на их гранях некоторые числа, чтобы сумма очков при бросании принимала значения 1, 2, ..., 36 с равными вероятностями?
Страница: << 1 2 3 4 >> [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|