ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральные числа p и q взаимно просты. Отрезок [0, 1] разбит на p + q одинаковых отрезков. ![]() |
Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 2440]
Можно ли расставить во всех точках плоскости с целыми координатами натуральные числа так, чтобы каждое натуральное число стояло в какой-нибудь точке, и чтобы на каждой прямой, проходящей через две точки с целыми координатами, но не проходящей через начало координат, расстановка чисел была периодической?
Окружность разбита точками на 3k дуг: по k дуг длины 1, 2 и 3. Докажите, что найдутся две диаметрально противоположные точки деления.
На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной особой, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.
Натуральные числа p и q взаимно просты. Отрезок [0, 1] разбит на p + q одинаковых отрезков.
Найдите наименьшее c, при котором
Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 2440] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |