ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите в целых числах уравнение   xφn+1 + yφn.
Число φ определено в задаче 60578.

   Решение

Задачи

Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 2440]      



Задача 60550

 [Задача Ферма]
Тема:   [ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 8,9,10

Найдите наименьшее число вида  n = 2αpq,  где p и q – некоторые нечётные простые числа, для которого  σ(n) = 3n.

Прислать комментарий     Решение

Задача 60584

Темы:   [ Уравнения в целых числах ]
[ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

Решите в целых числах уравнение   xφn+1 + yφn.
Число φ определено в задаче 60578.

Прислать комментарий     Решение

Задача 60592

 [Теорема Ламе]
Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

Пусть число m1 в десятичной системе счисления записывается при помощи n цифр.
Докажите, что при любом m0 число шагов k в алгоритме Евклида для чисел m0 и m1 удовлетворяет неравенству  k ≤ 5n.

Прислать комментарий     Решение

Задача 60609

Тема:   [ Алгоритм Евклида ]
Сложность: 4-
Классы: 10,11

Последовательности {ak} и {bk} строятся по следующему закону: a1 = 1,   an+1 = min(an, bn),  bn+1 = |bn – an|  (n ≥ 1).
  а) Докажите, что  an ≠ 0  и  an  стремится к 0 при  n → ∞.
  б) Докажите, что последовательность    имеет предел и найдите этот предел.

Прислать комментарий     Решение

Задача 60687

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10,11

а) Докажите, что квадрат целого числа не может оканчиваться четырьмя одинаковыми цифрами, отличными от 0.
б) Какими тремя цифрами может оканчиваться целое число, квадрат которого оканчивается тремя одинаковыми цифрами, отличными от 0?

Прислать комментарий     Решение

Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .