ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что  77777 – 7777  делится на 10.

   Решение

Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 598]      



Задача 30391

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Найдите последнюю цифру числа 777.

Прислать комментарий     Решение

Задача 60663

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Докажите, что  77777 – 7777  делится на 10.

Прислать комментарий     Решение

Задача 60695

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Найдите последнюю цифру числа 7777.

Прислать комментарий     Решение

Задача 60739

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что для любого натурального числа найдётся кратное ему число, десятичная запись которого состоит только из 0 и 1.

Прислать комментарий     Решение

Задача 60778

Темы:   [ Арифметика остатков (прочее) ]
[ Теорема Эйлера ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 10,11

Существует ли степень тройки, заканчивающаяся на 0001?

Прислать комментарий     Решение

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .