ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В каких случаях разрешимо сравнение  ax ≡ b (mod m)? Опишите все решения этого сравнения в целых числах.

   Решение

Задачи

Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 2440]      



Задача 60717

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

В каких случаях разрешимо сравнение  ax ≡ b (mod m)? Опишите все решения этого сравнения в целых числах.

Прислать комментарий     Решение

Задача 60748

Тема:   [ Малая теорема Ферма ]
Сложность: 4
Классы: 10,11

Пусть p – простое число,  p > 2.  Докажите, что любой простой делитель числа  2p – 1  имеет вид  2kp + 1.

Прислать комментарий     Решение

Задача 60751

Тема:   [ Малая теорема Ферма ]
Сложность: 4
Классы: 10,11

Пусть для простого числа  p > 2  и целого a, не кратного p, выполнено сравнение  x² ≡ a (mod p).  Докажите, что  a(p–1)/2 ≡ 1 (mod p).

Прислать комментарий     Решение

Задача 60764

Темы:   [ Функция Эйлера ]
[ Формула включения-исключения ]
Сложность: 4
Классы: 9,10,11

Пусть    Докажите равенство   φ(n) = n(1 – 1/p1)...(1 – 1/ps).
  а) пользуясь мультипликативностью функции Эйлера;
  б) пользуясь формулой включения-исключения.
Определение функции Эйлера φ(n) см. в задаче 60758.

Прислать комментарий     Решение

Задача 60775

 [Тождество Гаусса]
Тема:   [ Функция Эйлера ]
Сложность: 4
Классы: 9,10,11

Докажите тождество Гаусса  φ(d ) = n. Определение функции φ(n) см. в задаче 60758.

Прислать комментарий     Решение

Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .