Страница:
<< 150 151 152 153
154 155 156 >> [Всего задач: 2440]
|
|
Сложность: 4 Классы: 8,9,10
|
Какое из чисел больше: (100!)! или 99!100!·100!99!?
|
|
Сложность: 4 Классы: 8,9,10
|
Найдите наибольшее натуральное число N, для которого уравнение 99x + 100y + 101z = N имеет единственное решение в натуральных числах x, y, z.
|
|
Сложность: 4 Классы: 9,10,11
|
Изначально на доске написано натуральное число N. В любой момент Миша может выбрать число a > 1 на доске, стереть его и дописать все натуральные делители a, кроме него самого (на доске могут появляться одинаковые числа). Через некоторое время оказалось, что на доске написано N² чисел. При каких N это могло случиться?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Цифры натурального числа $n$ > 1 записали в обратном порядке и результат умножили на $n$. Могло ли получиться число, записываемое только единицами?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пусть $x$ и $y$ — пятизначные числа, в
десятичной записи которых использованы все десять цифр ровно по одному
разу. Найдите наибольшее возможное значение $x$, если
$\operatorname{tg} x^\circ- \operatorname{tg} y^\circ=1+\operatorname{tg} x^\circ \operatorname{tg} y^\circ$ ($x^\circ$
обозначает угол в $x$ градусов).
Страница:
<< 150 151 152 153
154 155 156 >> [Всего задач: 2440]