ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите в натуральных числах уравнение   1! + 2! + ... + n! = m².

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 368]      



Задача 60703

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

а) При каких целых n число  5n² + 10n + 8  делится на 3?
б) А при каких на 4?

Прислать комментарий     Решение

Задача 60704

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

При каких целых n выражение  n² – 6n – 2  делится на  а) 8;  б) 9;  в) 11;  г) 121?

Прислать комментарий     Решение

Задача 60705

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

При каких целых n выражение  n² – n – 4  делится на а) 17;  б) 289?

Прислать комментарий     Решение

Задача 60727

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
[ Произведения и факториалы ]
Сложность: 3+
Классы: 8,9,10

Решите в натуральных числах уравнение   1! + 2! + ... + n! = m².

Прислать комментарий     Решение

Задача 60742

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 9,10,11

Известно, что  a12 + b12 + c12 + d12 + e12 + f12  делится на 13 (a, b, c, d, e, f – целые числа). Докажите, что abcdef делится на 136.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .