ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что при любом целом a
  a)  a5a  делится на 30;
  б)  a17a  делится на 510;
  в)  a11a  делится на 66;
  г)  a73a  делится на 2·3·5·7·13·19·37·73.

   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 606]      



Задача 60719

 [Теорема Вильсона]
Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 8,9,10

Докажите, что для простого p   (p – 1)! ≡ – 1 (mod p).

Прислать комментарий     Решение

Задача 60721

 [Теорема Лейбница]
Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 8,9,10

Докажите, что p – простое тогда и только тогда, когда   (p – 2)! ≡ 1 (mod p).

Прислать комментарий     Решение

Задача 60755

Темы:   [ Числа Фибоначчи ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11

Пользуясь результатом задачи 60579, найдите остатки, которые при простом p дают числа Fp и Fp+1 при делении на p.

Прислать комментарий     Решение

Задача 60783

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 10,11

Докажите, что при любом целом a
  a)  a5a  делится на 30;
  б)  a17a  делится на 510;
  в)  a11a  делится на 66;
  г)  a73a  делится на 2·3·5·7·13·19·37·73.

Прислать комментарий     Решение

Задача 60830

Темы:   [ Деление с остатком ]
[ Китайская теорема об остатках ]
Сложность: 4-
Классы: 8,9,10

Найдите такое наименьшее чётное натуральное число a, что  a + 1  делится на 3,  a + 2  – на 5,  a + 3  – на 7,  a + 4  – на 11,  a + 5  – на 13.

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .